Search results for "symbiotic nitrogen fixation"

showing 7 items of 7 documents

Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs

2018

Dead wood is initially a nitrogen (N) poor substrate, where the N content increases with decay, partly due to biological N2 fixation, but the drivers of the N accumulation are poorly known. We quantified the rate of N2 fixation in decaying Norway spruce logs of different decay stages and studied the potential regulators of the N2-fixation activity. The average rate for acetylene reduction in the decaying wood was 7.5 nmol ethylene g−1d−1, which corresponds to 52.9 μg N kg−1d−1. The number of nifH copies (g−1 dry matter) was higher at the later decay stages, but no correlation between the copy number and the in vitro N2 fixation rate was found. All recovered nifH sequences were assigned to t…

0106 biological sciences0301 basic medicineta1172Soil Sciencechemistry.chemical_element010603 evolutionary biology01 natural sciencesMicrobiologyMethane03 medical and health scienceschemistry.chemical_compoundlahoaminenBotanyDry matterlahopuutritsobitdead woodnifHbiologyPicea abiesChemistryta1183coarse woody debrisPicea abiesbiology.organism_classificationNitrogenSubstrate (marine biology)kuusi030104 developmental biologytypensidontaasymbiotic nitrogen fixationNitrogen fixationDiazotrophCoarse woody debrisSoil Biology and Biochemistry
researchProduct

Pea Efficiency of Post-drought Recovery Relies on the Strategy to Fine-Tune Nitrogen Nutrition

2020

International audience; As drought is increasingly frequent in the context of climate change it is a major constraint for crop growth and yield. The ability of plants to maintain their yield in response to drought depends not only on their ability to tolerate drought, but also on their capacity to subsequently recover. Post-stress recovery can indeed be decisive for drought resilience and yield stability. Pea (Pisum sativum), as a legume, has the capacity to fix atmospheric nitrogen through its symbiotic interaction with soil bacteria within root nodules. Biological nitrogen fixation is highly sensitive to drought which can impact plant nitrogen nutrition and growth. Our study aimed at dyna…

0106 biological sciencesagroecologyrootssymbiotic nitrogen fixationRoot nodulegrain legumes[SDV]Life Sciences [q-bio]chemistry.chemical_elementContext (language use)Plant ScienceBiologylcsh:Plant culture01 natural sciencesPisumyield stability03 medical and health sciencesSativumDrought recoverylcsh:SB1-1110resilienceLegumePisum sativumOriginal Research030304 developmental biologywater deficit2. Zero hunger0303 health sciencesfungifood and beverages15. Life on landbiology.organism_classificationNitrogenchemistryAgronomy13. Climate actionNitrogen fixation010606 plant biology & botanyFrontiers in Plant Science
researchProduct

How does pea (Pisum sativum) recover from water deficit?

2020

International audience

[SDE] Environmental Sciencessymbiotic nitrogen fixationre-watering[SDE]Environmental SciencesComputingMilieux_MISCELLANEOUSwater deficit
researchProduct

Quantification des flux d’azote induits par les cultures de légumineuses et étude de leurs déterminants : comparaison de 10 espèces de légumineuses à…

2019

In the context of agroecological transition, the reintroduction of legume crops should play a key role in cropping system sustainability by allowing a reduction of nitrogen (N) inputs. But few references are available concerning the agronomical and ecological services provided by a wide range of legume crops, particularly within crops succession scale. Thus, the main objective of our study is to quantify the N fluxes during and after the legume crops taking into account 10 legume crops (peas, lupin, faba bean, soybean...). Our experiment consists in i) quantifying symbiotic N fixation depending on the amount of soil inorganic N, the mineralisation of N present in legume crop residues after …

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences[SDV.SA.AGRO] Life Sciences [q-bio]/Agricultural sciences/AgronomyPlant traitsSymbiotic nitrogen fixationMineralisationFixation symbiotique de l'azote[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomyTraits de plantesLixiviationFixation symbiotique de l’azote[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyPre-Crop effectMinéralisationLeachingEcosystem services[SDV.SA.SDS] Life Sciences [q-bio]/Agricultural sciences/Soil studyServices écosystémiquesEffet précédent
researchProduct

Légumineuses et prairies temporaires : des fournitures d'azote pour les rotations

2015

Intervention présentée aux Journées de l'AFPF, "La fertilité des sols dans les systèmes fourragers", les 8 et 9 avril 2015; Les atouts des légumineuses (fixation symbiotique, diversité fonctionnelle...) leur permettent de contribuer à la fertilité des sols, à l'amélioration de la durabilité de l'agriculture et de l'autonomie protéique des systèmes alimentaires. Il convient donc de mieux connaître leurs rôles, directs et indirects, dans les flux d'azote des rotations.Les légumineuses fourragères (en culture pure ou dans des couverts multispécifiques) représentent une grande part des apports azotés symbiotiques. Il existe une grande diversité d'implication des légumineuses dans les rotations.…

[SDV.SA]Life Sciences [q-bio]/Agricultural sciencessymbiotic nitrogen fixationsolagriculture durablenitrogen efficiencysystème fourragernitrogen balancelégumineusenitrogenarrière-effetsoilsystème de culture[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesnitrogen fertilisationself-sufficiencyazote[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesbilan d'azotesoil fertilityprairielegumefixation symbiotique de l'azoteafter-effectsrotation culturalesustainable agriculturefertilité du solfertilisation azotéeefficacité de l'azoteforage systemcrop systemautonomiegrasslandfrancecrop succession
researchProduct

How does pea (Pisum sativum) recover from water deficit?

2019

International audience; Pea (Pisum sativum), like other legumes, has the unique ability to fix atmospheric dinitrogen (N2) via symbiosis with soil bacteria known as rhizobia in root nodules. This particular feature makes the pea crop an essential component of sustainable cropping systems because of the reduction of nitrogen fertilizers it affords. However symbiotic nitrogen fixation (SNF) is very susceptible to abiotic stresses and particularly to water deficit, which is becoming an increasingly common threat in the current context of climate change. Water deficit impacts negatively SNF (Prudent et al., 2016), affecting both nodule number and growth (i.e. structural components of SNF) and t…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencessymbiotic nitrogen fixationre-watering[SDV]Life Sciences [q-bio][SDE]Environmental Sciencesfood and beverages[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologywater deficit
researchProduct

The Lotus japonicus ROP3 Is Involved in the Establishment of the Nitrogen-Fixing Symbiosis but Not of the Arbuscular Mycorrhizal Symbiosis

2021

Legumes form root mutualistic symbioses with some soil microbes promoting their growth, rhizobia, and arbuscular mycorrhizal fungi (AMF). A conserved set of plant proteins rules the transduction of symbiotic signals from rhizobia and AMF in a so-called common symbiotic signaling pathway (CSSP). Despite considerable efforts and advances over the past 20 years, there are still key elements to be discovered about the establishment of these root symbioses. Rhizobia and AMF root colonization are possible after a deep cell reorganization. In the interaction between the model legume Lotus japonicus and Mesorhizobium loti, this reorganization has been shown to be dependent on a SCAR/Wave-like signa…

symbiotic nitrogen fixationarbuscular mycorrhizal symbiosisbiologyfungiLotusLotus japonicusPlant culturerho-GTPasePlant Sciencebiology.organism_classificationPhenotypeROPSB1-1110RhizobiaSymbiosisLotus japonicusBotanyNitrogen fixationColonizationGeneOriginal ResearchFrontiers in Plant Science
researchProduct